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Energy transfers between modes obtained from the proper orthogonal decomposition
(POD) of a turbulent flow past a backward-facing step are analysed with the aim
of providing guidelines for modelling unresolved modes in truncated POD–Galerkin
models. It is observed that energy transfers are local in the POD basis, and that
the Fourier-decomposition-based concepts of forward and backward energy cascades
are also valid in the POD basis, the net effect being a forward energy cascade.
General features of the eddy-viscosity representation of kinetic energy transfers are
investigated through a priori tests. It is observed that the ideal eddy-viscosity model
should exhibit a cusp behaviour near the cutoff mode.

1. Introduction
The proper orthogonal decomposition (POD, also known as the Karhunen–Loève

decomposition, see Holmes, Lumley & Berkooz 1996 for a survey) is a convenient
tool for describing non-homogeneous turbulent flows. Indeed, it makes it possible to
educe global coherent structures of the flow in an uniquivocal way. This decomposition
being optimal, it became a popular way to construct dynamical systems representing
turbulent flows.

The present paper aims to describe the global features of energy transfers between
POD modes in a turbulent, wall-bounded, non-homogeneous separated flow. In
particular, a quantitative analysis of the modal interactions, based on computations of
eddy-viscosity-like parameters, is proposed. The selected configuration is the turbulent
flow past a backward-facing step, with a turbulent inlet. The purpose is twofold.

First, energy transfers have historically been studied using Fourier decomposition,
which is convenient for homogeneous flows only; thus, both theoretical (e.g. Kraichnan
1971) and numerical studies (e.g. Yeung, Brasseur & Wang 1995) have provided deep
insight into the dynamics of turbulent fluctuations, assessing the existence of forward
and backward energy cascades. A few studies based on the POD approach have
addressed non-homogeneous turbulent flows, but generally in local configurations
such as the minimal channel unit (Aubry et al. 1988; Podvin & Lumley 1998; Podvin
2001; Webber, Handler & Sirovich 1997, 2002), or a transient flat-plate boundary
layer (Rempfer & Fasel 1994). Here, the POD–Galerkin method is applied to a
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spatially extended, non-homogeneous separated flow. Moreover, as POD is equivalent
to the Fourier decomposition in homogeneous directions, most authors apply an
explicit hybrid POD/Fourier decomposition (Fourier decomposition in homogeneous
directions followed by POD in the remaining directions). Such an approach is different
from the full three-dimensional POD adopted in this study as far as mode selection
is concerned, since the way the modes will be ordered are different: in the full
POD, all modes are uniquely ordered (by their eigenvalues), while they can be
ordered separately in each homogeneous direction in hybrid Fourier/POD analysis.
As previously proposed in Rempfer & Fasel (1994), one goal here is to analyse the
energy transfers within a full POD basis, looking at their main characteristics and
comparing them with results drawn from the Fourier analysis in the isotropic case.

Secondly, when turbulent flows are considered, although very few POD modes
contain most of the total turbulent kinetic energy and can be kept to construct a
reduced-order dynamical system, the low-energetic modes, which drop out, must be
taken into account in the POD–Galerkin approach to recover an accurate description
of the flow. This problem is formally equivalent to that of large-eddy simulation (LES,
see Sagaut 2002 for a general presentation). Following the proposal of Aubry et al.
(1988), most authors use a diffusive model based on an extension of the Heisenberg
spectral viscosity model for homogeneous flows: Berkooz et al. (1990); Podvin (2001);
Ukeiley et al. (2001). As quoted by Aubry et al. (1988), such a model is very similar
to the well-known Smagorinsky one, which can be interpreted as an extension of
the same Heisenberg model in physical space for flows represented using a local
basis. However, as previously mentioned, almost all works using that approach rely
on a POD/Fourier decomposition (e.g. two-homogeneous-direction plane channel
flow). Truncating the basis in both the Fourier and POD representation, the validity
of the parameterization of unresolved modes using a viscosity-type model may be
understood by invoking the Kolmogorov hypothesis and assuming that the cutoff
occurs at small enough scales, as is done in the usual LES framework. The validity
of this model for the minimal channel flow unit was assessed by Podvin (2001).
However, when considering complex non-homogeneous flows, the question may arise
of the validity of this type of eddy-viscosity model, since the underlying assumptions
dealing with both the existence and the dominance of a forward energy cascade
remain to be investigated. The second goal of the present study is therefore to provide
an analysis of the representation of the energy transfers between modes via an eddy-
viscosity assumption, in order to provide guidelines for the definition of models for
the unresolved modes. Since it is known that even in the simple case of the Fourier
representation of isotropic turbulence the global features of subgrid models are very
dependent on the spectrum shape, the filter shape and the cutoff length, the case of
truncated POD models is non-trivial.

2. Numerical database and POD–Galerkin method
The POD modes are computed using M = 1000 three-dimensional instantaneous

snapshots obtained by performing a LES of a turbulent incompressible flow past a
backward-facing step. The Reynolds number based on the mean streamwise velocity
at the entrance and the height of the channel above the step is 66 100. That based
on the inflow velocity Γin and the height h of the step is 7432. The three velocity
components are stored over the full computational domain every 50 time steps. The
computational domain (see figure 1) contains the turbulent inlet channel and the flow
past the step. The sampling time is chosen so as to encompass at least one period of
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Figure 1. Geometry of the computational domain, corresponding to the spatial extent
of the POD modes.
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Figure 2. (a) Full POD spectrum; (b) first 100 POD modes.

the low-frequency breathing mode of the recirculation bubble. The reader is referred
to Labbé, Sagaut & Montreuil (2002) for details on the LES.

The instantaneous velocity field u is split into a mean part ū(x, y, z) = 〈u(x, y, z, t)〉
and a fluctuating part ũ = u − ū, where 〈.〉 denotes the average over the M snapshots.
The POD decomposition is applied to ũ, yielding

ũ(x, y, z, t) =
∑

k

(ũ, φk)︸ ︷︷ ︸
ãk (t)

φk(x, y, z) (2.1)

where (. , .) is the classical L2 inner product on the flow domain. (φk)k∈[[1,M]] is
the orthonormal POD basis and the ãk(t) the time-dependent coefficients of the
decomposition. They have the following orthogonality property:

〈ãk ãj 〉 = λkδj,k = σk
2δj,k ∀k, j (2.2)

and the basis is ordered so that λk � λk+1∀k.
This decomposition is optimal in the sense that, for all n, the first n POD modes

capture more kinetic energy on the average than any other set of n spatial functions.
Figure 2 displays the POD spectrum on a logarithmic scale computed from the
database. One of the main advantage of the POD basis, thanks to its optimality
property, is that it allows very large data compression factors. In the present case, the
first 87 modes contain 99.9% of the mean turbulent kinetic energy.

To analyse energy transfers among POD modes, the evolution equation for each
mode is obtained by applying the Galerkin method on the space spanned by the
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first n � M POD modes. Considering periodic boundary conditions in the spanwise
direction y, the no-slip condition at solid walls, a Dirichlet condition on velocity at
the inflow plane, Γin, where values were prescribed using a precursor simulation of
a turbulent incompressible plane channel flow, and the zero-stress outflow boundary
condition on the exit plane, the following weak formulation is obtained from the
non-dimensional-Navier–Stokes set of equations:

(
∂u
∂t

+ (u · ∇)u, φ

)
+

1

Re


 ∑

v∈{x,y,z}

(∇uv, ∇φv)


 +

∫
Γin

(
pn − 1

Re
∇u · n

)
· φ dσ︸ ︷︷ ︸

inlet boundary term

= 0

(2.3)

for all solenoidal test functions φ satisfying periodic boundary conditions in spanwise
direction and the no-slip condition at solid walls. The POD–Galerkin system is
obtained by taking the first n modes as basis and test functions. Making the
assumption that the inlet boundary term can be neglected (this is realistic since
modes arising from the decomposition of ũ have very small contributions on the inlet
plane Γin), the following n-dimensional polynomial dynamical system is derived:

ȧi(t) = pi(A(t)) ∀i ∈ [[1, n]] (2.4)

where A(t) = (a1(t), · · · , an(t)) and ak = ãk/σk for all k. Each pi can be expressed as

pi(A) = C0
i +

D0
i

Re
+

n∑
k=1

(
Ck

i +
Dk

i

Re

)
ak +

n∑
k1=1

k1∑
k2=1

C
k1,k2

i ak1
ak2

(2.5)

with

C0
i = −((ū · ∇)ū, φi), D0

i = −
∑

v∈{x,y,z}

(∇ūv, ∇(φi)v), (2.6)

Ck
i = −σk((φk · ∇)ū + (ū · ∇)φk, φi), Dk

i = −σk

∑
v∈{x,y,z}

(∇(φk)v, ∇(φi)v), (2.7)

and

C
k1,k2

i = − σk1
σk2

1 + δk1,k2

[((φk1
· ∇)φk2

, φi) + ((φk2
· ∇)φk1

, φi)]. (2.8)

3. Intermodal kinetic energy transfers

The total fluctuating kinetic energy per mass unit is K(t) = 1
2

‖ũ‖2
=

∑
i Ki(t) where

Ki(t) = 1
2
λi ai(t)

2 is the energy captured by the ith mode. From (2.5), we obtain

K̇i = λiai ȧi = C̃0
i ai +

n∑
k=1

C̃k
i akai︸ ︷︷ ︸

diadic interactions

+

n∑
k1=1

k1∑
k2=1

C̃
k1,k2

i ak1
ak2

ai

︸ ︷︷ ︸
triadic interactions

(3.1)

where

C̃0
i = λi

(
C0

i +
D0

i

Re

)
, C̃k

i = λi

(
Ck

i +
Dk

i

Re

)
, C̃

k1,k2

i = λiC
k1,k2

i . (3.2)
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Figure 3. (a) Map of log(|〈Π (i|j )〉|): iso-levels, ranging from white (maximum) to black
(minimum). (b) 〈Π (i|j )〉 as a function of (i − j ) for three values of i.

Equation (3.1) shows that the evolution of the energy of a mode results from three
kinds of interactions: a linear interaction with the mean flow, diadic terms arising from
the interaction with the mean flow and viscous terms, and triadic interactions which
account for the nonlinear inviscid interactions between modes. With the Fourier basis,
diadic terms degenerate into simple linear terms, while triadic interactions are non-
zero only for specific triads. Therefore differences between POD and usual Fourier
decomposition are that viscous terms yield interactions between modes and that all
groups of three modes lead to energy transfers. However it is worth noting that mean
energy exchanges between POD modes through diadic interactions are zero since
〈aiaj 〉 = δi,j .

Energetic exchanges via triadic interactions are now considered. The triadic term
C̃

k1,k2

i ak1
ak2

ai is regarded as the influence of the mode whose index is max(k1, k2) on
the variation of Ki . Thus, the influence of the j th mode on the energy of the ith
mode is

Π (i|j ) =

j∑
k=1

C̃
j,k
i akajai. (3.3)

The absolute value of the mean transfer 〈Π (i|j )〉 for the first 87 modes is presented
in figure 3; both the global energy transfer map, using a logarithmic scale for a clarity,
and profiles for three values of i are plotted. It is observed that energy transfers among
POD modes are local; indeed, the mean transfer is negligible for modes (i, j ) such that
|i − j | � 25. That property of locality was raised by the results of Rempfer & Fasel
(1994), but for a transitional flow and in a small three-dimensional window of the
whole initial computational domain. It can be seen as an extension of the well-known
result that a Fourier mode with wavenumber k will exchange most of its energy
with modes within the range [k/2, 2k], i.e. that energy transfers are local, Kraichnan
(1971, 1976). This observation is consistent with the result that POD modes converge
toward Fourier modes in the limit of very high wavenumber, i.e. for dissipative scales
(see Foias, Manley & Sirovich 1990), but it was not a priori obvious in the present
case since the cutoff occurs within larger scales. Moreover, analyses carried out on
the Fourier basis deal only with homogeneous turbulence and with the inertial range
of the spectrum, whereas in the present case, the flow is non-homogeneous, wall
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Figure 4. (a) Sign of the mean triadic transfer term 〈Π (i|j )〉. Black: negative; white: positive.
(b) Percentage of time during which Π (i|j ) is positive (minimum: 27.5%; maximum: 77.7%)
with four grey levels ranging from black to white: [27.5, 40], [40, 50], [50, 60] and [60, 77.7].

bounded and separated, and POD modes are global, i.e. they integrate the dynamics
over the whole computational domain.

The direction of transfer is recovered by looking at the sign of the mean transfer
term 〈Π (i|j )〉. The corresponding map is displayed in figure 4. Black regions
correspond to a negative mean value, i.e. to a net drain of the kinetic energy of
mode i by mode j , and white regions to a positive sign, i.e. to a net gain of kinetic
energy by mode i. In good agreement with results from Fourier decomposition, it is
observed that the main phenomenon is a forward energy cascade among the POD
modes: a mode i drains energy from modes j < i and redistributes energy toward
modes k > i. Some small regions corresponding to an inverse cascade are also detected,
but they are associated with very small absolute values of the mean transfer, and
thus should not be considered as evidence for the existence of an inverse cascade in
the mean.

To obtain a deeper insight into the dynamics of POD modes, the percentage of time
during which the instantaneous transfer term Π (i|j ) is positive is plotted in figure 4.
It is seen that net energy gains (resp. losses) are associated with regions where the
transfer is most of the time in the same direction as the mean transfer, but that the
transfer between two modes is in both directions during the full integration time.
This can be interpreted has a generalization of the classical finding of the existence of
a backward energy transfer among Fourier modes, or the fact that the sign of local
transfers across a cutoff wavenumber may change from time to time and point to
point in physical space.

It was observed that the fluctuating kinetic energy transfer among POD modes
exhibits many features already observed using a Fourier-mode decomposition. This
similarity can be explained by looking at the flow structures associated with each
POD mode. Some of them are shown in figure 5, where isosurfaces of the Q-criterion
(Hunt, Wray & Moin 1988) are displayed. It is seen that the higher the index of the
POD mode is, the smaller are the flow structures. This is consistent with the fact that
POD modes are sorted by decreasing order of kinetic energy, and that small structures
are less energetic than larger ones. So, in agreement with Kolmogorov’s local isotropy
hypothesis, the main conclusions from the Fourier analysis can be extended to the
POD decomposition framework. Consequently, the main phenomenon is a cascade
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Figure 5. Isosurfaces of the Q criterion for some POD modes: (a) φ1 with Q = Q1;
(b) φ20 with Q = 2
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of kinetic energy from low- toward high-index modes. This forward cascade is a net
effect, and some inverse cascade transfers occur over short durations, yielding an
inverse cascade.

4. On eddy-viscosity parameterization of kinetic energy transfers
We now analyse the POD modal interactions through the computations of pseudo-

eddy-viscosities, with emphasis on the parameterization of the energy transfers across
a cutoff index l. This, which is an extension of the usual LES closure problem, is
encountered when a truncated POD basis is used, i.e. when some POD modes are
discarded. Since the use of POD leads to optimal data compression, very-low-order
models can be obtained from the POD–Galerkin method, which will mimic either
DNS or LES. In the case of LES-like dynamical systems, the problem of taking
into account interactions with discarded modes should be solved. The global features
of eddy-viscosity type models for POD need to be determined, since many studies
carried out in the Fourier framework (e.g. Domaradzki et al. 1993, Zhou & Vahala
1993) have shown that the eddy-viscosity representation is very dependent on many
parameters (e.g. spectrum shape, filter shape, cutoff wavenumber). A similar analysis
is provided here which is expected to give useful informations to improve an LES-like
POD–Galerkin model.
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Introducing the cutoff index l in (2.5), the resolved (denoted by the � exponent)
and unresolved interactions (> exponent) terms are

pi(A) = c�

i (A) + c>

i (A) + (d�

i (A) + d>

i (A))/Re (4.1)

with

c�

i (A) = C0
i +

l∑
k=1

Ck
i ak +

l∑
k1=1

k1∑
k2=1

C
k1,k2

i ak1
ak2

, d�

i (A) = D0
i +

l∑
k=1

Dk
i ak, (4.2)

c>

i (A) =

n∑
k=l+1

Ck
i ak +

n∑
k1=l+1

k1∑
k2=1

C
k1,k2

i ak1
ak2

and d>

i (A) =

n∑
k=l+1

Dk
i ak . (4.3)

Corresponding terms arising from (3.1) are aic
�

i (A), aid
�

i (A), aic
>

i (A) and aid
>

i (A).
The closure problem consists in expressing unresolved terms in the momentum
equation and/or the kinetic energy equation as functions of the resolved modes. We
consider here eddy-viscosity-type closures, which can be expressed as

pi(A) ≈ c�

i (A) + (1/Re + ν(i|l))d�

i (A), i.e. p>

i ≈ ν(i|l) d�

i (4.4)

with p>

i = c>

i + d>

i /Re. The pseudo eddy-viscosity ν(i|l) a priori depends on the index
of the mode considered and on the cutoff index, as is the case for the Kraichnan–
Chollet–Lesieur subgrid viscosity in Fourier space (see Kraichnan 1976; Chollet
& Lesieur 1981). Two ways computing values of this closure parameter ν(i|l) are
investigated below, corresponding to the mean value over the set of snapshots or
the least-square approximation. The three following values are obtained by applying
these approximations to the momentum equation and to the kinetic energy equation
(mean value computed from the momentum equation yields irrelevant results):

νi =
〈p>

i (A)d�

i (A)〉
〈(d�

i (A))2〉 (least-square approximation from momentum equation); (4.5)

ν̃i =
〈aip

>

i (A)〉
〈aid

�

i (A)〉 (mean value from kinetic energy equation); (4.6)

ν̃i =
〈a2

i p
>

i (A)d�

i (A)〉
〈(aid

�

i (A))2〉 (least-square approximation from kinetic energy equation).

(4.7)

Usual subgrid-viscosity models for LES are based on the budget equation for
the resolved kinetic energy, and thus are similar to closures defined by (4.6) and
(4.7). Results obtained for several cutoff values are presented in figure 6. Only modes
1 � i � 87 are used to compute the eddy viscosity, the other modes being unimportant.
The locality of the transfers observed in the preceding section also indicates that most
transfers occur within this part of the POD spectrum for the cutoff values considered
here.

It is observed that the three definitions yield similar eddy-viscosity profiles which
share several properties with the theoretical eddy viscosity in Fourier space for a
Kolmogorov spectrum and a sharp-cutoff filter: (i) a cusp is observed near the cutoff
as i tends to l (zero viscosity is recovered for i = l, since modes higher than 87 are
discarded), (ii) ν(i|l) is a decreasing function of l for fixed i and (iii) the maximum
value of the cusp is a nearly constant function of the cutoff index l. These three
observations are consistent with the previous statement that the global interactions
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Figure 6. Artificial viscosities computed with different cutoff index (l = 87, 80, 70, 60, 40, 30
and 20): (a) Re ν̃i , (b) Re νi and (c) Re ν̃i . (d) Comparison of Re ν̃i , Re νi and Re ν̃i for l = 60
(the scale was chosen with respect to the maximum value of Re ν̃i).

between POD modes of increasing index number (i.e. of decreasing energy) are similar
to interactions between Fourier modes of increasing wavenumber. The recovery of
a cusp-like behaviour near the cutoff on the POD basis is very interesting, since it
implies that consistent eddy-viscosity-type models should be mode-dependent. Note
that the existence of this cusp is not a straightforward extension of classical Fourier-
space results, since the latter disappear for realistic spectrum shapes or smooth filters
(Leslie & Quarini 1979).

5. Conclusion
Energy transfers between POD modes representing a turbulent incompressible flow

over a backward-facing step have been studied. Using 1000 instantaneous three-
dimensional snapshots, the interaction terms have been reconstructed using the
Navier–Stokes equations and a Galerkin approach. Energy transfers among POD
modes are found to share several properties with their counterparts in Fourier space:
(i) they are local in the POD basis in the sense that the transfer term Π (i|j ) is a
rapidly decreasing function of |i−j |, (ii) a net forward energy cascade exists, i.e. mode
i drains kinetic energy from modes j < i and redistributes it to modes j > i and (iii)
a backward energy cascade was observed, since the sign of Π (i|j ) is not constant
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over the 1000 snapshots. These similarities could be explained by POD modes being
ranked in decreasing kinetic energy order, and thus associated with smaller and
smaller vortical structures. As a consequence, the integrated interactions over the
whole computational domain exhibit the same properties as the model interactions
within Fourier modes, despite the non-homogeneous character of the present flow.

An interesting consequence is that an eddy-viscosity parameterization of transfers
between resolved and unresolved modes in a truncated POD basis shares many
properties with its counterpart in Fourier space including the existence of a cusp
near the cutoff. Present results suggest that the pseudo-eddy-viscosity ν(i|l) should
explicitly depend on both i and l. Future works will deal with the development of
closed truncated POD–Galerkin models.
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